

Communication

Combining Second-Order Jahn–Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of BaTeMO (M = Mo or W)

Hyun-Seup Ra, Kang Min Ok, and P. Shiv Halasyamani

J. Am. Chem. Soc., **2003**, 125 (26), 7764-7765• DOI: 10.1021/ja035314b • Publication Date (Web): 10 June 2003 Downloaded from http://pubs.acs.org on March **29**, **2009**

> Ba² • Ba² • Te⁴ • Mo⁶ • O²

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 19 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 06/10/2003

Combining Second-Order Jahn–Teller Distorted Cations to Create Highly Efficient SHG Materials: Synthesis, Characterization, and NLO Properties of $BaTeM_2O_9$ (M = Mo⁶⁺ or W⁶⁺)

Hyun-Seup Ra, Kang Min Ok, and P. Shiv Halasyamani*

Department of Chemistry and the Center for Materials Chemistry, University of Houston, 136 Fleming Building, Houston, Texas 77204-5003

Received March 25, 2003; E-mail: psh@uh.edu

Second-order nonlinear optical (NLO) materials, i.e., secondharmonic generating (SHG) materials, are of current interest owing to their uses in photonic technologies.¹⁻³ A requirement for all SHG materials is a noncentrosymmetric (NCS) crystal structure.⁴ Recently, a variety of strategies have been put forth to rationally design new NCS materials.5-10 We have focused on creating new NCS materials¹¹⁻¹⁵ by synthesizing oxides containing cations susceptible to second-order Jahn-Teller (SOJT) distortions.¹⁶⁻²² SOJT effects involve structural changes attributable to a nondegenerate groundstate interacting with a low-lying excited state. The distortion occurs if the energy gap between the highest occupied (HOMO) and lowest unoccupied (LUMO) orbitals is small and if there is a symmetryallowed distortion permitting mixing of these two orbitals. The distortion can occur in two different "families" of cations, d⁰ transition metals (Ti⁴⁺, Nb⁵⁺, W⁶⁺) and cations with stereoactive lone-pairs (Se⁴⁺, Sb³⁺, Te⁴⁺), and results in asymmetric coordination environments. In this communication we report the synthesis, characterization, and SHG properties of two new materials, $BaTeM_2O_9$ (M = Mo⁶⁺ or W⁶⁺), in which extremely strong SHG efficiencies are observed, $\sim 600 \times SiO_2$, on the order of LiNbO₃.²³ The strong SHG efficiency is attributable to the constructive addition of the Te–O and M^{6+} –O bond polarizations. We are also able to give an estimate of $\beta(W^{6+}-O)$, by using our recently reported model.14

 $BaTeM_2O_9$ (M = Mo⁶⁺ or W⁶⁺) were synthesized by solid-state techniques and their structures determined by standard crystallographic methods.²⁴ Polycrystalline BaTeM₂O₉ (M = Mo⁶⁺ or W⁶⁺) were synthesized by combining stoichiometric amounts of Ba₂CO₃, MoO₃ (WO₃), and TeO₂. The mixtures were heated in air to 550 °C for 36h with two intermittent re-grindings. White polycrystalline powders, subsequently shown to be BaTeMo₂O₉ (BaTeW₂O₉) were recovered. Single crystals of BaTeMo₂O₉ were grown by pouring Ba₂CO₃ (1.38 mmol) into the liquid mixture of MoO₃ (2.76 mmol) and TeO₂ (6.90 mmol) at 570 °C in a platinum crucible. The mixture was held at 570 °C for 12h and cooled slowly to 450 °C at 6 °C h⁻¹ before being quenched to room temperature. Colorless block-shaped crystals were manually extracted. Single crystals of BaTeW2O9 were grown by heating a mixture of Ba2-CO₃ (2.32 mmol), WO₃ (4.64 mmol), and TeO₂ (3.48 mmol) at 760 °C in a platinum crucible. The mixture was held at 760 °C for 24h and cooled slowly to 700 °C at 1 °C h⁻¹ before being quenched to room temperature. Colorless block- shaped crystals were also manually extracted. The quality of BaTeMo₂O₉ crystals was substantially better than BaTeW₂O₉.

Both materials crystallize as clear, colorless faceted blocks. The compounds have two-dimensional layered structures consisting of MO_6 ($M = Mo^{6+}$ or W^{6+}) octahedra linked to asymmetric TeO₃ polyhedra. The anionic layers are separated by Ba²⁺ cations (see Figure 1). The bond distances for Mo⁶⁺–O (W⁶⁺–O) range from

Figure 1. Ball-and-stick diagram of BaTeMo₂O₉. Note the asymmetric coordination environments in both Te^{4+} (green spheres) and Mo^{6+} (blue spheres) cations.

1.728(9)-2.233(7) Å (1.73(2) - 2.22(2) Å), whereas the Te-O bonds range from 1.867(8)-2.024(19) Å. Both the M⁶⁺ and Te⁴⁺ cations are in asymmetric coordination environments attributable to SOJT distortions. These distortions polarize the MO₆ and TeO₃ polyhedra. Interestingly for the two materials the intra-octahedral distortions are not the same. In BaTeMo₂O₉, the two unique Mo⁶⁺ cations distort along the local C₃ [111] direction, toward a face, of their respective octahedra. This out-of-center distortion produces three 'short' (1.728(9)-1.847(9) Å) and three 'long' (2.036(8)-2.233-(7) Å) Mo⁶⁺-O bonds (see Figure 2). In BaTeW₂O₉, the two unique W^{6+} cations distort either along the local C₂ [110] direction, toward an edge, or the local C₃ [111] direction, resulting in two 'short' (1.73(2) Å and 1.77(2) Å), two 'normal' (1.90(2) Å and 1.99(2) Å), and two 'long' (2.22(2) Å x 2) $W^{6+}{-}O$ bonds, and for the C_3 -W⁶⁺ distortion three 'short' (1.73(2)-1.85(2) Å) and three 'long' (2.09(2)-2.14(2) Å) W⁶⁺-O bonds. For Te⁴⁺, an asymmetric coordination environment is observed owing to the stereoactive lone-pair. Bond valence calculations for the M^{6+} (M = Mo^{6+} or

Figure 2. ORTEP (50% probability ellipsoids) in BaTeMo₂O₉ showing the asymmetric coordination environments of the Mo⁶⁺ and Te⁴⁺ cations. The approximate direction of the dipole moment in each polyhedra is also shown.

 W^{6+}) and Te⁴⁺ cations result in values ranging from 5.82–6.25 and 3.91–4.04, respectively.^{25,26}

Infrared data on polycrystalline BaTeMo₂O₉ and BaTeW₂O₉ revealed M⁶⁺-O and Te-O stretches between 840 and 900 cm⁻¹ and 600–800 cm⁻¹. The vibrations at 600 and 474 cm⁻¹ can be assigned to M-O-Te bends. The assignments are consistent with those previously reported.²⁷ Thermogravimetric analyses on the materials indicated the compounds are stable up to 650 °C. Above 650 °C, decomposition occurs to BaMO₄ (M = Mo⁶⁺ or W⁶⁺) and unidentified amorphous products.

Both of the reported materials crystallize in the NCS space group $P2_1$ (No. 4). NLO measurements on polycrystalline BaTeMo₂O₉ and BaTeW2O9 revealed extremely strong SHG responses of 600 and 500 \times SiO_2 respectively—on the order of LiNbO_3.^{23} The very large SHG responses are directly attributed not only to the polarization from the $M^{6+}-O$ and Te-O bonds (see Figure 2), but more importantly to the constructive addition of these polarizations. Additional powder SHG measurements indicated both materials are type-1 phase-matchable.23 From the SHG efficiency and phase-matching behavior, we are able to estimate $\langle d_{\rm eff} \rangle_{\rm exp}$, the bulk NLO susceptibility, for each material. For BaTeMo₂O₉ (BaTeW₂O₉), $\langle d_{\rm eff} \rangle_{\rm exp}$ is 28 (22) pm/V. Since $\langle d_{\rm eff} \rangle_{\rm exp} \propto \beta$ (M–O), the bond hyperpolarizability, it should be possible to estimate β for a given Mⁿ⁺-O bond once the crystal structure, the type-1 phase-matching behavior, and $\langle d_{\rm eff} \rangle_{\rm exp}$ are known. We have developed such a model and recently published a table of β 's for a variety of M^{*n*+}-O bonds.¹⁴ The model also works in "reverse", that is β for the various M^{*n*+}–O bonds can be input into the relevant equations, and $\langle d_{\text{eff}} \rangle_{\text{calc}}$ may be obtained. For BaTeMo₂O₉, using β (Te⁴⁺-O) = 130 × 10⁻⁴⁰ m⁴/V and β (Mo⁶⁺-O) = 305 × 10⁻⁴⁰ m⁴/V results in $\langle d_{eff} \rangle_{calc}$ = 20 pm/V, which is in reasonable agreement with $\langle d_{\rm eff} \rangle_{\rm exp} = 28 \text{ pm/}$ V.

For BaTeW₂O₉ a different situation occurs. A β (W⁶⁺-O) of 570 \pm 130 \times 10⁻⁴⁰ m⁴/V has been reported.²⁸ This value seems erroneously large, given that third-row transition metals are less polarizable than second-row transition metals and that the magnitude of the out-of-center distortion for W⁶⁺ is smaller than Mo⁶⁺. Since in BaTeW₂O₉, the W⁶⁺-O and Te⁴⁺-O bond polarizations constructively add, we may use $\langle d_{eff} \rangle_{exp}$ and β (Te⁴⁺-O) to estimate β (W⁶⁺-O). In doing so, we arrive at a value of β (W⁶⁺-O) of 230 \times 10⁻⁴⁰ m⁴/V. This value is consistent with the smaller polarizability and magnitude of the intra-octahedral distortion of W⁶⁺.

In summary, we have demonstrated that highly efficient SHG materials can be designed by synthesizing oxides containing cations susceptible to SOJT distortions. In BaTeM₂O₉ the polarizations attributable to the M⁶⁺–O and Te⁴⁺–O bonds constructively add, resulting in the large SHG responses. On the basis of the powder SHG measurements, we have also determined a more reasonable value for β (W⁶⁺–O), 230 × 10⁻⁴⁰ m⁴/V.

Acknowledgment. We thank the Welch Foundation, NSF-Career (DMR-0092054), and the ACS-PRF Program for support. P.S.H. is a Beckman Young Investigator.

Supporting Information Available: Two X-ray crystallographic files in CIF format and a calculated and observed X-ray diffraction pattern for BaTeMo₂O₉. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Chen, C.; Liu, G. Annu. Rev. Mater. Sci. 1986, 16, 203-243.
- (2) Marder, S. R.; Sohn, J. E.; Stucky, G. D. *Materials for Non-Linear Optics: Chemical Perspectives*; American Chemical Society: Washington DC, 1991.
- (3) Keszler, D. A. Curr. Opin. Solid State Mater. Sci. 1999, 4, 155-162.
- (4) Nye, J. F. Physical Properties of Crystals; Oxford University Press: Oxford, 1957.
- (5) Bruce, D.; Wilkinson, A. P.; While, M. G.; Bertrand, J. A. J. Solid State Chem. 1996, 125, 228–233.
- (6) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158-5168.
- (7) Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2001, 123, 7742–7743.
- (8) Welk, M. E.; Norquist, A. J.; Arnold, F. P.; Stern, C. L.; Poeppelmeier, K. R. *Inorg. Chem.* **2002**, *41*, 5119–5125.
- (9) Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511-522.
- (10) Hwu, S.-J.; Ulutagay-Kartin, M.; Clayhold, J. A.; Mackay, R.; Wardojo, T. A.; O'Connor, C. J.; Kraweic, M. J. Am. Chem. Soc. 2002, 124, 12404– 12405.
- (11) Halasyamani, P. S.; Poeppelmeier, K. R. Chem. Mater. 1998, 10, 2753–2769.
- (12) Porter, Y.; Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S. Chem. Mater. 2001, 13, 1910–1915.
- (13) Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S. J. Solid State Chem. 2001, 161, 57–62.
- (14) Goodey, J.; Broussard, J.; Halasyamani, P. S. Chem. Mater. 2002, 14, 3174–3180.
- (15) Goodey, J.; Ok, K. M.; Broussard, J.; Hofmann, C.; Escobedo, F. V.; Halasyamani, P. S. J. Solid State Chem. 2003, in press.
- (16) Opik, U.; Pryce, M. H. L. Proc. R. Soc. (London) 1957, A238, 425-447.
- (17) Bader, R. F. W. Mol. Phys. 1960, 3, 137-151.
- (18) Bader, R. F. W. Can. J. Chem. 1962, 40, 1164-1175.
- (19) Pearson, R. G. J. Am. Chem. Soc. 1969, 91, 4947-4955.
- (20) Pearson, R. G. J. Mol. Struct. (THEOCHEM) 1983, 103, 25-34.
- (21) Wheeler, R. A.; Whangbo, M.-H.; Hughbanks, T.; Hoffmann, R.; Burdett, J. K.; Albright, T. A. J. Am. Chem. Soc. **1986**, *108*, 2222–2236.
- (22) Kunz, M.; Brown, I. D. J. Solid State Chem. **1995**, 115, 395–406.
- (23) Kurtz, S. K.; Perry, T. T. J. Appl. Phys. **1968**, *39*, 3798–3813.
- (24) For BaTeMo₂O₉ (BaTeW₂O₉) colorless faceted crystals, 0.03 mm \times 0.05
- (24) For BaTeMo20₉ (BaTeW205) colorless faceted crystals, 0.05 mm × 0.08 mm (0.20 mm × 0.30 mm × 0.40 mm), were used. Single-crystal data were collected on a Siemens SMART diffractometer equipped with a 1K CCD area detector using graphite monochromated Mo Kα radiation at 293 K. The data were integrated using the Siemens SAINT [SAINT, Version 4.05; Siemens Analytical X-ray Systems, Inc.: Madison, WI, 1995] program, with the intensities corrected for Lorentz, polarization, air absorption, and absorption attributable to the variation in the path length through the detector faceplate. ψ-Scan absorption corrections were applied. The structures were solved by direct methods using SHELXS-97 [Sheldrick, G. M. SHELXS-97: A program for automatic solution of crystal structures; University of Goettingen; Goettingen, Germany, 1997.] and refined using SHELXL-97 [Sheldrick, G. M. SHELXS-97: A program for crystal structure refinement; University of Goettingen. Goettingen, Germany, 1997.] crystal data for BaTeMo20₉ (BaTeW20₉): monoclinic, P2₁, a = 5.5407(5) (5.490(2)) Å, b = 7.4661(7) (7.446(3)) Å, c = 8.8448-(9) (8.887(3)) Å, β = 90.841(2)° (90.370(6)°), V = 365.80(6) (363.3(2)) Å³, Z = 2 (2), R(F) = 0.0313 (0.0601), GOF = 1.078 (1.082).
 (25) Brown, I. D.; Altermatt, D. Acta Crystallage. 1985, B41, 244–247.
- (25) Brown, I. D., Antermatt, D. Acta Crystallogr. 1905, B41, 244 (247).
 (26) Brese, N. E.; O'Keeffe, M. Acta Crystallogr. 1991, B47, 192–197.
- (20) Blese, N. E., O Reene, M. Acta Crystallogr. 1991, B47, 192
 (27) Balraj, V.; Vidyasagar, K. Inorg. Chem. 1999, 38, 1394–1400.
- (27) Buildy, V., Vidyadgar, R. *Horg. Chem. 1999*, 56, 1594 (1460).
 (28) Wiegel, M.; Emond, M. H. J.; de Bruin, T. H. M.; Blasse, G. *Chem. Mater.*
- **1994**, *6*, 973–976.

JA035314B