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Second-order nonlinear optical (NLO) materials, i.e., second-
harmonic generating (SHG) materials, are of current interest owing
to their uses in photonic technologies.1-3 A requirement forall SHG
materials is a noncentrosymmetric (NCS) crystal structure.4 Re-
cently, a variety of strategies have been put forth to rationally design
new NCS materials.5-10 We have focused on creating new NCS
materials11-15 by synthesizing oxides containing cations susceptible
to second-order Jahn-Teller (SOJT) distortions.16-22 SOJT effects
involve structural changes attributable to a nondegenerate ground-
state interacting with a low-lying excited state. The distortion occurs
if the energy gap between the highest occupied (HOMO) and lowest
unoccupied (LUMO) orbitals is small and if there is a symmetry-
allowed distortion permitting mixing of these two orbitals. The
distortion can occur in two different “families” of cations, d0

transition metals (Ti4+, Nb5+, W6+) and cations with stereoactive
lone-pairs (Se4+, Sb3+, Te4+), and results in asymmetric coordination
environments. In this communication we report the synthesis,
characterization, and SHG properties of two new materials,
BaTeM2O9 (M ) Mo6+ or W6+), in which extremely strong SHG
efficiencies are observed,∼600× SiO2, on the order of LiNbO3.23

The strong SHG efficiency is attributable to the constructive
addition of the Te-O and M6+-O bond polarizations. We are also
able to give an estimate ofâ(W6+-O), by using our recently
reported model.14

BaTeM2O9 (M ) Mo6+ or W6+) were synthesized by solid-state
techniques and their structures determined by standard crystal-
lographic methods.24 Polycrystalline BaTeM2O9 (M ) Mo6+ or
W6+) were synthesized by combining stoichiometric amounts of
Ba2CO3, MoO3 (WO3), and TeO2. The mixtures were heated in air
to 550 °C for 36h with two intermittent re-grindings. White
polycrystalline powders, subsequently shown to be BaTeMo2O9

(BaTeW2O9) were recovered. Single crystals of BaTeMo2O9 were
grown by pouring Ba2CO3 (1.38 mmol) into the liquid mixture of
MoO3 (2.76 mmol) and TeO2 (6.90 mmol) at 570°C in a platinum
crucible. The mixture was held at 570°C for 12h and cooled slowly
to 450°C at 6°C h-1 before being quenched to room temperature.
Colorless block-shaped crystals were manually extracted. Single
crystals of BaTeW2O9 were grown by heating a mixture of Ba2-
CO3 (2.32 mmol), WO3 (4.64 mmol), and TeO2 (3.48 mmol) at
760°C in a platinum crucible. The mixture was held at 760°C for
24h and cooled slowly to 700°C at 1°C h-1 before being quenched
to room temperature. Colorless block- shaped crystals were also
manually extracted. The quality of BaTeMo2O9 crystals was
substantially better than BaTeW2O9.

Both materials crystallize as clear, colorless faceted blocks. The
compounds have two-dimensional layered structures consisting of
MO6 (M ) Mo6+ or W6+) octahedra linked to asymmetric TeO3

polyhedra. The anionic layers are separated by Ba2+ cations (see
Figure 1). The bond distances for Mo6+-O (W6+-O) range from

1.728(9)-2.233(7) Å (1.73(2)- 2.22(2) Å), whereas the Te-O
bonds range from 1.867(8)-2.024(19) Å. Both the M6+ and Te4+

cations are in asymmetric coordination environments attributable
to SOJT distortions. These distortions polarize the MO6 and TeO3

polyhedra. Interestingly for the two materials the intra-octahedral
distortions are not the same. In BaTeMo2O9, the two unique Mo6+

cations distort along the local C3 [111] direction, toward a face, of
their respective octahedra. This out-of-center distortion produces
three ‘short’ (1.728(9)-1.847(9) Å) and three ‘long’ (2.036(8)-2.233-
(7) Å) Mo6+-O bonds (see Figure 2). In BaTeW2O9, the two unique
W6+ cations distort either along the local C2 [110] direction, toward
an edge, or the local C3 [111] direction, resulting in two ‘short’
(1.73(2) Å and 1.77(2) Å), two ‘normal’ (1.90(2) Å and 1.99(2)
Å), and two ‘long’ (2.22(2) Å x 2) W6+-O bonds, and for the
C3-W6+ distortion three ‘short’ (1.73(2)-1.85(2) Å) and three ‘long’
(2.09(2)-2.14(2) Å) W6+-O bonds. For Te4+, an asymmetric
coordination environment is observed owing to the stereoactive
lone-pair. Bond valence calculations for the M6+ (M ) Mo6+ or

Figure 1. Ball-and-stick diagram of BaTeMo2O9. Note the asymmetric
coordination environments in both Te4+ (green spheres) and Mo6+ (blue
spheres) cations.
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W6+) and Te4+ cations result in values ranging from 5.82-6.25
and 3.91-4.04, respectively.25,26

Infrared data on polycrystalline BaTeMo2O9 and BaTeW2O9

revealed M6+-O and Te-O stretches between 840 and 900 cm-1

and 600-800 cm-1. The vibrations at 600 and 474 cm-1 can be
assigned to M-O-Te bends. The assignments are consistent with
those previously reported.27 Thermogravimetric analyses on the
materials indicated the compounds are stable up to 650°C. Above
650°C, decomposition occurs to BaMO4 (M ) Mo6+ or W6+) and
unidentified amorphous products.

Both of the reported materials crystallize in the NCS space group
P21 (No. 4). NLO measurements on polycrystalline BaTeMo2O9

and BaTeW2O9 revealed extremely strong SHG responses of 600
and 500× SiO2 respectivelyson the order of LiNbO3.23 TheVery
large SHG responses are directly attributed not only to the
polarization from the M6+-O and Te-O bonds (see Figure 2),
but more importantly to the constructiVe addition of these polariza-
tions.Additional powder SHG measurements indicated both materi-
als are type-1 phase-matchable.23 From the SHG efficiency and
phase-matching behavior, we are able to estimate〈deff〉exp, the bulk
NLO susceptibility, for each material. For BaTeMo2O9 (BaTeW2O9),
〈deff〉exp is 28 (22) pm/V. Since〈deff〉exp ∝ â(M-O), the bond
hyperpolarizability, it should be possible to estimateâ for a given
Mn+-O bond once the crystal structure, the type-1 phase-matching
behavior, and〈deff〉exp are known. We have developed such a model
and recently published a table ofâ’s for a variety of Mn+-O
bonds.14 The model also works in “reverse”, that isâ for the various
Mn+-O bonds can be input into the relevant equations, and〈deff〉calc

may be obtained. For BaTeMo2O9, usingâ(Te4+-O) ) 130× 10-40

m4/V and â(Mo6+-O) ) 305 × 10-40 m4/V results in〈deff〉calc )
20 pm/V, which is in reasonable agreement with〈deff〉exp ) 28 pm/
V.

For BaTeW2O9 a different situation occurs. Aâ(W6+-O) of 570
( 130 × 10-40 m4/V has been reported.28 This value seems
erroneously large, given that third-row transition metals are less
polarizable than second-row transition metals and that the magnitude
of the out-of-center distortion for W6+ is smaller than Mo6+. Since
in BaTeW2O9, the W6+-O and Te4+-O bond polarizations
constructively add, we may use〈deff〉exp andâ(Te4+-O) to estimate
â(W6+-O). In doing so, we arrive at a value ofâ(W6+-O) of 230
× 10-40 m4/V. This value is consistent with the smaller polariz-
ability and magnitude of the intra-octahedral distortion of W6+

compared with Mo6+.

In summary, we have demonstrated that highly efficient SHG
materials can be designed by synthesizing oxides containing cations
susceptible to SOJT distortions. In BaTeM2O9 the polarizations
attributable to the M6+-O and Te4+-O bonds constructively add,
resulting in the large SHG responses. On the basis of the powder
SHG measurements, we have also determined a more reasonable
value forâ(W6+-O), 230× 10-40 m4/V.
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Figure 2. ORTEP (50% probability ellipsoids) in BaTeMo2O9 showing
the asymmetric coordination environments of the Mo6+ and Te4+ cations.
The approximate direction of the dipole moment in each polyhedra is also
shown.
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